Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
J Biol Chem ; 300(1): 105515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042495

RESUMO

SDS22 and Inhibitor-3 (I3) are two ancient regulators of protein phosphatase 1 (PP1) that regulate multiple essential biological processes. Both SDS22 and I3 form stable dimeric complexes with PP1; however, and atypically for PP1 regulators, they also form a triple complex, where both proteins bind to PP1 simultaneously (SPI complex). Here we report the crystal structure of the SPI complex. While both regulators bind PP1 in conformations identical to those observed in their individual PP1 complexes, PP1 adopts the SDS22-bound conformation, which lacks its M1 metal. Unexpectedly, surface plasmon resonance (SPR) revealed that the affinity of I3 for the SDS22:PP1 complex is ∼10-fold lower than PP1 alone. We show that this change in binding affinity is solely due to the interaction of I3 with the PP1 active site, specifically PP1's M2 metal, demonstrating that SDS22 likely allows for PP1 M2 metal exchange and thus PP1 biogenesis.


Assuntos
Domínio Catalítico , Proteína Fosfatase 1 , Ubiquitina-Proteína Ligases , Ligação Proteica , Proteína Fosfatase 1/química , Humanos , Ubiquitina-Proteína Ligases/química , Microscopia Crioeletrônica , Metais/química
2.
J Biol Chem ; 299(12): 105432, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926279

RESUMO

Phosphoprotein phosphatase 1 (PP1) associates with specific regulatory subunits to achieve, among other functions, substrate selectivity. Among the eight PP1 isotypes in Leishmania, PP1-8e associates with the regulatory protein PNUTS along with the structural factors JBP3 and Wdr82 in the PJW/PP1 complex that modulates RNA polymerase II (pol II) phosphorylation and transcription termination. Little is known regarding interactions involved in PJW/PP1 complex formation, including how PP1-8e is the selective isotype associated with PNUTS. Here, we show that PNUTS uses an established RVxF-ΦΦ-F motif to bind the PP1 catalytic domain with similar interfacial interactions as mammalian PP1-PNUTS and noncanonical motifs. These atypical interactions involve residues within the PP1-8e catalytic domain and N and C terminus for isoform-specific regulator binding. This work advances our understanding of PP1 isoform selectivity and reveals key roles of PP1 residues in regulator binding. We also explore the role of PNUTS as a scaffold protein for the complex by identifying the C-terminal region involved in binding JBP3 and Wdr82 and impact of PNUTS on the stability of complex components and function in pol II transcription in vivo. Taken together, these studies provide a potential mechanism where multiple motifs within PNUTS are used combinatorially to tune binding affinity to PP1, and the C terminus for JBP3 and Wdr82 association, in the Leishmania PJW/PP1 complex. Overall, our data provide insights in the formation of the PJW/PP1 complex involved in regulating pol II transcription in divergent protozoans where little is understood.


Assuntos
Proteínas de Ligação a DNA , Leishmania , Proteínas Nucleares , Proteína Fosfatase 1 , Animais , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Leishmania/genética , Leishmania/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
3.
Cell Chem Biol ; 30(12): 1666-1679.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37625414

RESUMO

An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1ß and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.


Assuntos
Proteína Fosfatase 1 , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Ligação Proteica , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação
4.
Nature ; 609(7926): 416-423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830882

RESUMO

RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.


Assuntos
Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Proteínas 14-3-3 , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo
5.
Nature ; 609(7926): 408-415, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831509

RESUMO

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Assuntos
Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Motivos de Aminoácidos , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Estabilidade Proteica , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo , Proteínas ras/ultraestrutura
6.
Nature ; 609(7926): 400-407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768504

RESUMO

The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Fosfatase 1 , Transdução de Sinais , Proteínas ras , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Fosfosserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Especificidade por Substrato , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestrutura
7.
Microbiol Spectr ; 10(1): e0138821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985336

RESUMO

Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease. In severe cases, it can cause life-threatening neurological complications, such as aseptic meningitis and polio-like paralysis. There are no specific antiviral treatments for EV71 infections. In a previous study, the host protein growth arrest and DNA damage-inducible protein 34 (GADD34) expression was upregulated during EV71 infection determined by ribosome profiling and RNA-sequencing. Here, we investigated the interactions of host protein GADD34 and EV71 during infections. Rhabdomyosarcoma (RD) cells were infected with EV71 resulting in a significant increase in expression of GADD34 mRNA and protein. Through screening of EV71 protein we determined that the non-structural precursor protein 3CD is responsible for upregulating GADD34. EV71 3CD increased the RNA and protein levels of GADD34, while the 3CD mutant Y441S could not. 3CD upregulated GADD34 translation via the upstream open reading frame (uORF) of GADD34 5'untranslated regions (UTR). EV71 replication was attenuated by the knockdown of GADD34. The function of GADD34 to dephosphorylate eIF2α was unrelated to the upregulation of EV71 replication, but the PEST 1, 2, and 3 regions of GADD34 were required. GADD34 promoted the EV71 internal ribosome entry site (IRES) activity through the PEST repeats and affected several other viruses. Finally, GADD34 amino acids 563 to 565 interacted with 3CD, assisting GADD34 to target the EV71 IRES. Our research reveals a new mechanism by which GADD34 promotes viral IRES and how the EV71 non-structural precursor protein 3CD regulates host protein expression to support viral replication. IMPORTANCE Identification of host factors involved in viral replication is an important approach in discovering viral pathogenic mechanisms and identifying potential therapeutic targets. Previously, we screened host proteins that were upregulated by EV71 infection. Here, we report the interaction between the upregulated host protein GADD34 and EV71. EV71 non-structural precursor protein 3CD activates the RNA and protein expression of GADD34. Our study reveals that 3CD regulates the uORF of the 5'-UTR to increase GADD34 translation, providing a new explanation for how viral proteins regulate host protein expression. GADD34 is important for EV71 replication, and the key functional domains of GADD34 that promote EV71 are PEST 1, 2, and 3 regions. We report that GADD34 promotes viral IRES for the first time and this process is independent of its eIF2α phosphatase activity.


Assuntos
Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Doença de Mão, Pé e Boca/metabolismo , Biossíntese de Proteínas , Proteína Fosfatase 1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Linhagem Celular , Enterovirus Humano A/química , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/virologia , Interações Hospedeiro-Patógeno , Humanos , Sítios Internos de Entrada Ribossomal , Fases de Leitura Aberta , Ligação Proteica , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
8.
Chem Biol Interact ; 351: 109766, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34861245

RESUMO

Microcystins (MC) are a group of structurally similar cyanotoxins with currently 279 described structural variants. Human exposure is frequent by consumption of contaminated water, food or food supplements. MC can result in serious intoxications, commensurate with ensuing pathology in various organs or in rare cases even mortality. The current WHO risk assessment primarily considers MC-LR, while all other structural variants are treated as equivalent to MC-LR, despite that current data strongly suggest that MC-LR is not the most toxic MC, and toxicity can be very different for MC congeners. To investigate and analyse binding and conformation of different MC congeners, we applied for the first time Molecular Dynamics (MD) simulation to four MC congeners (MC-LR, MC-LF, [Enantio-Adda5]MC-LF, [ß-D-Asp3,Dhb7]MC-RR). We could show that ser/thr protein phosphatase 1 is stable in all MD simulations and that MC-LR backbone adopts to a second conformation in solvent MD simulation, which was previously unknown. We could also show that MC congeners can adopt to different backbone conformation when simulated in solvent or in complex with ser/thr protein phosphatase 1 and differ in their binding behaviour. Our findings suggest that MD Simulation of different MC congeners aid in understanding structural differences and binding of this group of structurally similar cyanotoxins.


Assuntos
Microcistinas/metabolismo , Proteína Fosfatase 1/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Microcistinas/química , Microcystis/enzimologia , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteína Fosfatase 1/química , Estabilidade Proteica , Coelhos
9.
Open Biol ; 11(12): 210205, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847777

RESUMO

Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325-554 and R15B340-639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325-674 and R15B340-713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.


Assuntos
Mutação , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Actinas/metabolismo , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteína Fosfatase 1/genética , Especificidade por Substrato
10.
Nat Struct Mol Biol ; 28(10): 835-846, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625748

RESUMO

Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.


Assuntos
Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Estresse Fisiológico/fisiologia , eIF-2 Quinase/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Células CHO , Domínio Catalítico , Cricetulus , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Fosforilação , Fosfosserina/metabolismo , Proteína Fosfatase 1/genética , Reprodutibilidade dos Testes , eIF-2 Quinase/genética
11.
Nat Commun ; 12(1): 5131, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446736

RESUMO

Protein delivery with cell-penetrating peptide is opening up the possibility of using targets inside cells for therapeutic or biological applications; however, cell-penetrating peptide-mediated protein delivery commonly suffers from ineffective endosomal escape and low tolerance in serum, thereby limiting in vivo efficacy. Here, we present an intracellular protein delivery system consisting of four modules in series: cell-penetrating peptide, pH-dependent membrane active peptide, endosome-specific protease sites and a leucine zipper. This system exhibits enhanced delivery efficiency and serum tolerance, depending on proteolytic cleavage-facilitated endosomal escape and leucine zipper-based dimerisation. Intravenous injection of protein phosphatase 1B fused with this system successfully suppresses the tumour necrosis factor-α-induced systemic inflammatory response and acetaminophen-induced acute liver failure in a mouse model. We believe that the strategy of using multifunctional chimaeric peptides is valuable for the development of cell-penetrating peptide-based protein delivery systems, and facilitate the development of biological macromolecular drugs for use against intracellular targets.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Falência Hepática Aguda/tratamento farmacológico , Peptídeos/química , Proteína Fosfatase 1/administração & dosagem , Animais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/metabolismo , Endossomos/genética , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos Endogâmicos BALB C , Peptídeos/genética , Peptídeos/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Transporte Proteico
12.
Cell Signal ; 85: 110059, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062239

RESUMO

Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1ß, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.


Assuntos
Coração , Miocárdio , Animais , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo
13.
J Neurosci ; 41(14): 3040-3050, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827970

RESUMO

Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, ß, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.


Assuntos
Plasticidade Neuronal/fisiologia , Proteína Fosfatase 1/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Proteína Fosfatase 1/química , Estrutura Terciária de Proteína , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia
14.
Fertil Steril ; 115(2): 348-362, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32977940

RESUMO

OBJECTIVE: To design protein phosphatase 1 (PP1)-disrupting peptides covalently coupled to inert cell-penetrating peptides (CPPs) as sychnologically organized bioportide constructs as a strategy to modulate sperm motility. DESIGN: Experimental study. SETTING: Academic research laboratory. PATIENT(S)/ANIMAL(S): Normozoospermic men providing samples for routine analysis and Holstein Frisian bulls. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Effect of the bioportides on the activity and interactions of PP1γ2-a PP1 isoform expressed exclusively in testicular germ cells and sperm-and on sperm vitality and motility. RESULT(S): PP1-disrupting peptides were designed based on the sequences from: 1) a sperm-specific PP1 interactor (A kinase anchor protein 4); and 2) a PP1 inhibitor (protein phosphatase inhibitor 2). Those sequences were covalently coupled to inert CPPs as bioportide constructs, which were successfully delivered to the flagellum of sperm cells to induce a marked impact on PP1γ2 activity and sperm motility. Molecular modeling studies further facilitated the identification of an optimized PP1-binding sequence and enabled the development of a modified stop-sperm bioportide with reduced size and increased potency of action. In addition, a bioportide mimetic of the unique 22-amino acid C-terminus of PP1γ2 accumulated within spermatozoa to significantly reduce sperm motility and further define the PP1γ2-specific interactome. CONCLUSION(S): These investigations demonstrate the utility of CPPs to deliver peptide sequences that target unique protein-protein interactions in spermatozoa to achieve a significant impact upon spermatozoa motility, a key prognostic indicator of male fertility.


Assuntos
Anticoncepcionais Masculinos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fragmentos de Peptídeos/administração & dosagem , Proteína Fosfatase 1/antagonistas & inibidores , Motilidade dos Espermatozoides/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Bovinos , Anticoncepcionais Masculinos/química , Humanos , Masculino , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Estrutura Secundária de Proteína , Motilidade dos Espermatozoides/fisiologia , Espermatogênese/efeitos dos fármacos , Espermatogênese/fisiologia
15.
J Mol Biol ; 432(23): 6061-6074, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33058883

RESUMO

The AAA-ATPase VCP/p97 cooperates with the SEP-domain adapters p37, UBXN2A and p47 in stripping inhibitor-3 (I3) from protein phosphatase-1 (PP1) for activation. In contrast to p97-mediated degradative processes, PP1 complex disassembly is ubiquitin-independent. It is therefore unclear how selective targeting is achieved. Using biochemical reconstitution and crosslink mass spectrometry, we show here that SEP-domain adapters use a multivalent substrate recognition strategy. An N-terminal sequence element predicted to form a helix, together with the SEP-domain, binds and engages the direct target I3 in the central pore of p97 for unfolding, while its partner PP1 is held by a linker between SHP box and UBX domain locked onto the peripheral N-domain of p97. Although the I3-binding element is functional in p47, p47 in vitro requires a transplant of the PP1-binding linker from p37 for activity stressing that both sites are essential to control specificity. Of note, unfolding is then governed by an inhibitory segment in the N-terminal region of p47, suggesting a regulatory function. Together, this study reveals how p97 adapters engage a protein complex for ubiquitin-independent disassembly while ensuring selectivity for one subunit.


Assuntos
Adenosina Trifosfatases/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Conformação Proteica , Proteína Fosfatase 1/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Metaloendopeptidases/química , Metaloendopeptidases/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Ligação Proteica/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/ultraestrutura , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Ubiquitina/genética , Ubiquitinas/química , Ubiquitinas/genética
16.
Adv Protein Chem Struct Biol ; 122: 231-288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951813

RESUMO

Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.


Assuntos
Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Animais , Humanos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Treonina/química , Treonina/metabolismo
17.
Nat Commun ; 11(1): 3583, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681005

RESUMO

The phosphatases PP1 and PP2A are responsible for the majority of dephosphorylation reactions on phosphoserine (pSer) and phosphothreonine (pThr), and are involved in virtually all cellular processes and numerous diseases. The catalytic subunits exist in cells in form of holoenzymes, which impart substrate specificity. The contribution of the catalytic subunits to the recognition of substrates is unclear. By developing a phosphopeptide library approach and a phosphoproteomic assay, we demonstrate that the specificity of PP1 and PP2A holoenzymes towards pThr and of PP1 for basic motifs adjacent to the phosphorylation site are due to intrinsic properties of the catalytic subunits. Thus, we dissect this amino acid specificity of the catalytic subunits from the contribution of regulatory proteins. Furthermore, our approach enables discovering a role for PP1 as regulator of the GRB-associated-binding protein 2 (GAB2)/14-3-3 complex. Beyond this, we expect that this approach is broadly applicable to detect enzyme-substrate recognition preferences.


Assuntos
Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Fosforilação , Ligação Proteica , Engenharia de Proteínas , Proteína Fosfatase 1/genética , Proteína Fosfatase 2/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato
18.
Proteins ; 88(7): 840-852, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31998983

RESUMO

Leucine rich repeats (LRRs) are present in over 430 000 proteins from viruses to eukaryotes. The LRRs are 20 to 30 residues long and occur in tandem. Individual LRRs are separated into a highly conserved segment with the consensus of LxxLxLxxNxL or LxxLxLxxNxxL (HCS) and a variable segment (VS). In LRRs parallel stacking of short ß-strands (at positions 3-5 in HCS) form a super helix arrangement called a solenoid structure. Many classes have been recognized. All three classes of Plant specific, Leptospira-like, and SDS22-like LRRs which are 24, 23, and 22 residues long, respectively, form a 3(10)-helix in the VS part. To get a deeper understanding of sequence, structure correlations in LRR structures, we utilized secondary structure assignment and HELFIT analysis (calculating helix axis, pitch, radius, residues per turn, and handedness) based on the atomic coordinates in crystal structures of 43 LRR proteins. We also defined three structural parameters using the three unit vectors of the helix axes of 3(10)-helix, ß-turn, and LRR-domain calculated by HELFIT. The combination of the secondary structure assignment and HELFIT reveals that their LRRs adopt unique super secondary structures consisting of a 3(10)-helix and one or two Type I ß-turns. We propose one structural parameter as a geometrical invariant of LRR solenoid structures. The common LxxLxxL sequence (where "L" is Leu, Ile, Val, Phe or Cys) in the three classes is an essential determinant for the super secondary structures providing a medium range interaction.


Assuntos
Leucina/química , Proteína Fosfatase 1/química , Sequências Repetitivas de Aminoácidos , Animais , Sequência Conservada , Cristalografia por Raios X , Humanos , Leptospira/química , Modelos Moleculares , Plantas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Vírus/química
19.
Proteins ; 88(2): 366-384, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31512287

RESUMO

This work explores how phosphorylation of an unstructured protein region in inhibitor-2 (I2) regulates protein phosphatase-1 (PP1) enzyme activity using molecular dynamics (MD). Free I2 is largely unstructured; however, when bound to PP1, three segments adopt a stable structure. In particular, an I2 helix (i-helix) blocks the PP1 active site and inhibits phosphatase activity. I2 phosphorylation in the PP1-I2 complex activates phosphatase activity without I2 dissociation. The I2 Thr74 regulatory phosphorylation site is in an unstructured domain in PP1-I2. PP1-I2 MD demonstrated that I2 phosphorylation promotes early steps of PP1-I2 activation in explicit solvent models. Moreover, phosphorylation-dependent activation occurred in PP1-I2 complexes derived from I2 orthologs with diverse sequences from human, yeast, worm, and protozoa. This system allowed exploration of features of the 73-residue unstructured human I2 domain critical for phosphorylation-dependent activation. These studies revealed that components of I2 unstructured domain are strategically positioned for phosphorylation responsiveness including a transient α-helix. There was no evidence that electrostatic interactions of I2 phosphothreonine74 influenced PP1-I2 activation. Instead, phosphorylation altered the conformation of residues around Thr74. Phosphorylation uncurled the distance between I2 residues Glu71 to Tyr76 to promote PP1-I2 activation, whereas reduced distances reduced activation. This I2 residue Glu71 to Tyr76 distance distribution, independently from Thr74 phosphorylation, controls I2 i-helix displacement from the PP1 active site leading to PP1-I2 activation.


Assuntos
Acrilamidas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína Fosfatase 1/metabolismo , Tioureia/análogos & derivados , Treonina/metabolismo , Acrilamidas/metabolismo , Acrilamidas/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/química , Homologia de Sequência de Aminoácidos , Tioureia/química , Tioureia/metabolismo , Tioureia/farmacologia , Treonina/química , Treonina/genética
20.
Proc Natl Acad Sci U S A ; 116(41): 20472-20481, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548429

RESUMO

The metalloenzyme protein phosphatase 1 (PP1), which is responsible for ≥50% of all dephosphorylation reactions, is regulated by scores of regulatory proteins, including the highly conserved SDS22 protein. SDS22 has numerous diverse functions, surprisingly acting as both a PP1 inhibitor and as an activator. Here, we integrate cellular, biophysical, and crystallographic studies to address this conundrum. We discovered that SDS22 selectively binds a unique conformation of PP1 that contains a single metal (M2) at its active site, i.e., SDS22 traps metal-deficient inactive PP1. Furthermore, we showed that SDS22 dissociation is accompanied by a second metal (M1) being loaded into PP1, as free metal cannot dissociate the complex and M1-deficient mutants remain constitutively trapped by SDS22. Together, our findings reveal that M1 metal loading and loss are essential for PP1 regulation in cells, which has broad implications for PP1 maturation, activity, and holoenzyme subunit exchange.


Assuntos
Metais/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Metais/química , Modelos Moleculares , Proteínas Nucleares/química , Fosfoproteínas Fosfatases/química , Fosforilação , Conformação Proteica , Proteína Fosfatase 1/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...